K-homology Nuclear Ribonucleoproteins Regulate Floral Organ Identity and Determinacy in Arabidopsis

نویسندگان

  • Encarnación Rodríguez-Cazorla
  • Juan José Ripoll
  • Alfonso Andújar
  • Lindsay J. Bailey
  • Antonio Martínez-Laborda
  • Martin F. Yanofsky
  • Antonio Vera
  • Li-Jia Qu
چکیده

Post-transcriptional control is nowadays considered a main checking point for correct gene regulation during development, and RNA binding proteins actively participate in this process. Arabidopsis thaliana FLOWERING LOCUS WITH KH DOMAINS (FLK) and PEPPER (PEP) genes encode RNA-binding proteins that contain three K-homology (KH)-domain, the typical configuration of Poly(C)-binding ribonucleoproteins (PCBPs). We previously demonstrated that FLK and PEP interact to regulate FLOWERING LOCUS C (FLC), a central repressor of flowering time. Now we show that FLK and PEP also play an important role in the maintenance of the C-function during floral organ identity by post-transcriptionally regulating the MADS-box floral homeotic gene AGAMOUS (AG). Previous studies have indicated that the KH-domain containing protein HEN4, in concert with the CCCH-type RNA binding protein HUA1 and the RPR-type protein HUA2, facilitates maturation of the AG pre-mRNA. In this report we show that FLK and PEP genetically interact with HEN4, HUA1, and HUA2, and that the FLK and PEP proteins physically associate with HUA1 and HEN4. Taken together, these data suggest that HUA1, HEN4, PEP and FLK are components of the same post-transcriptional regulatory module that ensures normal processing of the AG pre-mRNA. Our data better delineates the roles of PEP in plant development and, for the first time, links FLK to a morphogenetic process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional analysis of all AGAMOUS subfamily members in rice reveals their roles in reproductive organ identity determination and meristem determinacy.

Reproductive organ development is one of the most important steps in the life cycle of plants. Studies using core eudicot species like thale cress (Arabidopsis thaliana) and snapdragon (Antirrhinum majus) have shown that MADS domain transcription factors belonging to the AGAMOUS (AG) subfamily regulate the identity of stamens, carpels, and ovules and that they are important for floral meristem ...

متن کامل

MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice.

Floral organ identity and meristem determinacy in plants are controlled by combinations of activities mediated by MADS box genes. AGAMOUS-LIKE6 (AGL6)-like genes are MADS box genes expressed in floral tissues, but their biological functions are mostly unknown. Here, we describe an AGL6-like gene in rice (Oryza sativa), MOSAIC FLORAL ORGANS1 (MFO1/MADS6), that regulates floral organ identity and...

متن کامل

AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy.

In Arabidopsis, AUXIN RESPONSE FACTOR 3 (ARF3) belongs to the auxin response factor (ARF) family that regulates the expression of auxin-responsive genes. ARF3 is known to function in leaf polarity specification and gynoecium patterning. In this study, we discovered a previously unknown role for ARF3 in floral meristem (FM) determinacy through the isolation and characterization of a mutant of AR...

متن کامل

The ULTRAPETALA1 gene functions early in Arabidopsis development to restrict shoot apical meristem activity and acts through WUSCHEL to regulate floral meristem determinacy.

Shoot and floral meristem activity in higher plants is controlled by complex signaling networks consisting of positive and negative regulators. The Arabidopsis ULTRAPETALA1 (ULT1) gene has been shown to act as a negative regulator of meristem cell accumulation in inflorescence and floral meristems, as loss-of-function ult1 mutations cause inflorescence meristem enlargement, the production of ex...

متن کامل

Regulation of Arabidopsis flower development.

Plant development is governed by intrinsic and environmental factors that regulate the identity and activity of meristems, organized tissues of pluripotent "stem" cells, that together determine plant form and architecture. However, little is known about how these factors act at the molecular leve1 to affect meristem identity and function. Genetic studies in Arabidopsis and other plant species s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015